Searching for Dark Matter with the CDMS Detector

Sean Yeager Master's Defense 8 November 2013

Texas A&M Department of Physics and Astronomy

Outline

Dark Matter and WIMPs

The Cryogenic Dark Matter Search (CDMS) Experimental Layout

Backgrounds and their Interaction with the Detector

Results, Conclusions, and the Future

Dark Matter and WIMPs

Cosmology + Particle Physics

Questions about the early universe require knowledge about its smallest inhabitants

Likewise,
understanding the
universe gives us
knowledge about
fundamental
particles

Dark Matter

There is a large amount of evidence supporting the existence of dark matter

Dark matter is found throughout the universe and is about 1/4 of the mass energy of the universe

Dark Matter as a Particle?

The Bullet Cluster suggests that dark matter may be particle in nature

If dark matter is made of particles, we know some properties, but have to guess others

Weakly Interacting Massive Particles

Experiments put an upper limit on interaction cross section that is comparable to that of the weak force

There are many different methods of looking for WIMPs

CDMS uses the direct detection method of a WIMP interacting with a nucleus

The CDMS Experimental Layout

Detector Basics

Use 3" detectors

Each detector
features a
superconducting
crystal lattice of
heavy nuclei

Some are Si, some are Ge

They provide
extremely precise
timing and energy
resolution for low
energy interactions

Why Si and Ge?

When a particle interacts with a nucleus in the detector, it imparts a small amount of energy

The amount deposited depends on the mass of the nucleus and the mass of the particle

Since most interactions deposit a only small amount of energy, we use as low an energy threshold as possible

Particle Interactions

Particle interactions can deposit energy in two ways:

- 1) The direct ionization of electrons
- 2) The creation of lattice vibrations, or phonons

The detector is designed to measure both to determine what type of particle deposited energy

Ionization Channel

A voltage is applied to the crystal

Any charge carriers produced in the interaction move towards the edges where they are collected

Ionization Channel Continued

We can plot the amount of collected charge vs. time Notice steep rise time, use this to identify when pulse starts

Use the peak to measure the recoil electron's energy which we will later use to identify the particle – call this ionization energy

Phonon Channel

The detector is held at ~mK, in the superconducting temperature range

Any phonons produced will cause a small increase in temperature which causes a large increase in resistance

We measure this with
Transition Edge Sensors
(TES's) and
Superconducting
Quantum Interface
Devices (SQUIDs)

Phonon Collection

Phonon Channel Continued

The output of the SQUID is a measurement of current vs. time

The area under the curves gives a measure of the total energy that converted to phonons

The initial slope, or rise time, will play a role later

Signals and Backgrounds

Will describe what a WIMP signal looks like in the detector after describing how different SM particles will interact with the detector

Backgrounds and their Interaction with the Detector

Electrons and Photons

When electron or photon interacts with the detector, it deposits energy in the recoil electron which is ionized

Take measurements from ionization and phonon channels, plot them

Calibrate for electron recoil with gamma radiation from ¹³³Ba

Neutrons

When a neutron (or a WIMP) interacts with the detector, it excites a nucleus

The excited nucleus has several ways to lose its energy – ionizing electrons is one of them

For the same phonon measurement, we only observe about 1/3 as much ionization energy

We can use this to separate nuclear recoils from electron recoils

Calibrate for neutron recoil with ²⁵²Cf

Background Sources

- Cosmogenic particles which are products of cosmic rays
- 2) Radiogenic particles which are the result of the radioactive decays near the detector

Cosmogenic Backgrounds

Put experiment deep underground and identify via coincidence with cosmic muons

Muons themselves are easy to identify, interact on the MeV scale

Radiogenic Backgrounds

Use polyethylene shielding to reduce radiogenic neutrons

Surround detector with lead to minimize radiogenic gamma penetration

Switching to Yield for Biggest Background

Yield = E_{ion} / E_{phonon}

Can be used to more easily distinguish electron recoils from nuclear recoils

The Dominant Background: Electron Recoil Surface Events

Near the surface of the detector the ionization energy is measured as smaller than it actually is

This results in surface events faking nuclear recoil events since they show up in the nuclear recoil band

Use timing to identify surface events, since they arrive at sensors faster

Solution: Timing

Property of phonons: they multiply at surface transitions

This means that phonons from surface events will get noticed by the detector sooner and have a smaller risetime

Can use this to reject surface events

Blind Analysis

Develop cuts before even looking at data

Use calibrations to predict background as precisely as possible

Minimizes bias in analysis

Cuts and Background Estimation

- 1) Is a nuclear recoil (in green band)
- 2) Not a surface event

Use Geant4 and Monte Carlo simulations to predict number of all neutron recoil sources and surface electron recoil events

Expected Background for Silicon

Radiogenic Neutrons

0.04 + 0.00 / -0.02

Cosmogenic Neutrons

0.04 + 0.04 / -0.02

Surface Electron Recoils

0.82 + 0.12 / -0.10

Total

 0.9 ± 0.2

Results, Conclusions, and the Future

Three Candidate Events

More on the Three Events

All three are near our energy threshold

Monte Carlo simulations suggest a 5.4% chance of the background producing 3 or more events

The WIMP + background hypothesis is favored in a likelihood test over the background only hypothesis by 99.8%

Best fit WIMP mass is 8 GeV

The Ge detectors saw 2 events, but this was consistent with the expected background of 0.6 events

The Future

Lower our energy threshold to see if we can get more WIMP events.

Re-optimize our cuts with a focus on surface events

Upgraded to new Ge and Si detectors with better surface rejection (Super CDMS) and are taking data now

New results to be announced in two weeks

In a few years, moving to SNOlab, which will kill cosmogenic backgrounds with even better detectors

Conclusions

- So far the three potential WIMP events are very suggestive
- They hint at low mass WIMPs, since an excess was found in Si but not Ge
- More data is currently being taken
- Next step is to re-optimize the cuts and employ them in the improved detectors at Super CDMS at SnoLAB
- The future is very bright for the search for dark matter at CDMS!

Questions?

Back Up Slides

Back Up – CDMS vs. LUX

At a very low threshold Xe is better than Ge

LUX claims a threshold of 3 keV

"More realistically 5.5 keV" -Rupak

Current CDMS threshold is 7 keV

New thresholds: 2 keV for Ge and 3 keV for Si

Also new CDMS results are in 2 weeks

Back Up - Upper Limits vs. Theory

Black line: CDMS

Red dots: XENON100

Grey: MSSM

Green: LEEST

Pink: mSUGRA

WIMP-Nucleon Cross Section [cm]

Back Up -Three Event Details

	Detector	Recoil Energy	Yield	Charge Signal to Noise	Date
Event 1	T4Z3	9.51 keV	0.27	4.87 σ	July 1, 2008
Event 2	T4Z3	12.29 keV	0.23	5.11 σ	Sep 6, 2008
Event 3	T5Z3	8.20 keV	0.32	6.66 σ	March 14, 2008