

34th International Conference on High Energy Physics park Energy

Matter 33"

<u>Measuring the Dark</u> <u>Matter Relic Density</u> <u>at the LHC</u>

Richard Arnowitt, Bhaskar Dutta, Alfredo Gurrola, Teruki Kamon, Abram Krislock & <u>David Toback</u> Department of Physics, Texas A&M University

Hypothetical Timeline

• History to date:

- Precision constraints on both the Dark Matter density and the Standard Model
- Phenomenologist's use these results to constrain SUSY models → Tell the experimentalists at LHC where to look
- 2008-10: Establish that we live in a Supersymmetric world at the LHC
- 2011: Precision measurements of the particle masses and SUSY parameters → compare Dark Matter relic density predictions to those from WMAP

Combining Particle Physics with Cosmology

 $\Omega_{SUSY\,DM}$

۱S

Outline of the Talk or What if it were true?

- Why current constraints and hints point to the co-annihilation region in Supersymmetry
- Lighting the way: Three important datasets
- Discovery and Measurement Techniques
 - First evidence for SUSY
 - A smoking gun for the co-annihilation region
 - Sparticle mass measurements and Universality checks
 - SUSY parameter measurements
 - Neutralino Relic Density prediction to be compared to $\Omega_{CDM}h^2$

•	
 Conclusions 	For more details see:
	• Arnowitt, Dutta, Gurrola, Kamon, Krislock & D.T., PRL100 (2008) 231802
ICHEP 2008 Me	a · Arnowitt et al., PLB 649 (2007) 73
July 31 th 2008	• Arnowitt et al,, PLB 639 (2006) 46

Experimental Constraints on mSUGRA

Towards Discovering the Dark Matter Favored Region

What do we want to know?

Measure the SUSY masses/parameters Pick a baseline configuration $M_{\alpha} = 210 \ GeV$ $M_{\tilde{q}} = 830 \ GeV$ $M_{1/2} = 350 \ GeV$ $M_{\tilde{q}_{i}} = 748 \ GeV$ $\Omega_{\tilde{\chi}_1^0} h^2 = 0.1$ $M_{\tilde{\chi}_{o}^{0}} = 260 \ GeV$ $\tan\beta = 40$ ∆**M**=10.6 GeV $M_{\tilde{\tau}} = 151.3 \text{ GeV}$ $A_0 = 0$ $M_{\tilde{x}^{0}} = 140.7 \ GeV$ Sgn(μ) > 0 Want to **mSUGRA** measure the Use ISAJET-PGSvalues and **Universality Relations:** DarkSUSY test these $M_{\tilde{q}} / M_{\tilde{\gamma}_{2}^{0}} = 3.19$ relations 6 $M_{\tilde{a}} / M_{\tilde{z}_{0}} = 5.91$ LHC **ICHEP 2008** Measuring th July 31th 2008 Dave To

Sample 1: Met+jets

Sample 2: 2_t+2jets+Met

р

q

Nojiri, Polesselo, Tovey, THEP 0602 (2006) 063

ττ deca

If low tan β then dilepton + jets + mets data sets $\Rightarrow \tilde{\chi}_2^0$ decays should show an excess in ee/µµ/ $\tau\tau$

If high tan β then BR($\tilde{\chi}_{2}^{0} \rightarrow \tau \tilde{\tau} \rightarrow \tau \tau \tilde{\chi}_{1}^{0}$) ~ 100% \Rightarrow Only see an excess in $\tau \tau$

Smoking gun we're in co-annihilation region

ICHEP 2008 July 31th 2008

Measuring the Dark Matter Relic Density at the LHC Dave Toback et. al., Texas A&M University

Sample 3: b+jets+Met

250

200

150

100

50

500

1000

1500 2 M_{eff}^(b) (GeV)

(& M^{peak}

 M_{eff}^{peak} & $M_{i\tau\tau}^{peak}$

Scale units

Arbitrary

 $\tan \beta = 48$

 $\tan \beta = 40$

 $\tan\beta = 32$

M^{(b)peak}

2000

.sensitive to t/b masses

 \dots sensitive to A_{n} and $\tan\beta$

Since we don't allow b's in

insensitive to A_{n} and tan β

 $M_{eff}^{(b)peak} = 933 \ GeV$

 $M_{\text{off}}^{(b)\text{peak}} = 1122 \text{ GeV}$

= 1026 GeV

- In this scenario the stops and sbottoms are significantly lighter than the gluinos and other squarks
- Create a new variable to measure the stop/sbottom mass scale. Use M_{eff}, but require the first jet to be a b
- Require the original Meff to NOT have a b

Transform our Observables into Measurements

Measure the mSUGRA Parameters and Ωh^2

Conclusions

- If the co-annihilation region is realized in nature it provides a natural Smoking Gun that can be well measured with ~10 fb⁻¹ of LHC data
- With the right datasets/observables we get
 - Sparticle mass measurements
 - Tests of Universality
 - Estimates of the SUSY parameters
 - Comparisons to precision WMAP data
 - These methods are applicable beyond minimal models and could help make measurements that would give us confidence we have discovered SUSY
- The future is bright for Particle Physics and Cosmology! But, we have a lot on our plate as the LHC data starts to come in!

ICHEP 2008 July 31th 2008 Measuring the Dark Matter Relic Density at the LHC Dave Toback et. al., Texas A&M University