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Analysis Process
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Search Experiment

+ Search jf’ér a new particle in high-energy physics involves
1) Col,l"e_c‘t*a large number of collisions

S=2) .Sele_ct interesting final state objects (photons)

o "3')"-Séparate events produced by a particular signal process

from those produced by a set of well-known background

process

4) These results in a small number of events passing our
selection requirements, consistent with the expectation
from a calculation of the expected backgrounds

5) Determine the search sensitivity by setting an upper limit
on the sighal hypothesis parameters, using optimization

procedure
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A New Physics Event Signal

+ A new phy51cs predicts that in the Teva

. pair of néw heavy neutral particles (
~ produced

‘ Decay promptly

and a photon

+ Focus on both ’s can decay in the detector: I
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Escape the detector:
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Missing energy
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Y<
)—' Two photons : 7y

+decays into an undetectable particle [
that gives rise to energy imbalance, missing energy (),

:gravitino),
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e The Well-known Backgrounds

]

EWK Background

Non-collsion Backgrounds

Primary Collision

QCD Background

" BeaQ—Halo ..
/ “m} ity }“ﬁ*’w FH o N:: }‘
fh 1% ! e A
‘"'Mw”w BN 1T
teorr (NS) 25-20-15-10 -5 0 5 10

Non-Collision Background
: Cosmic and Beam effects
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: Particle vs. New Particle

4,
4,
...
....
L]

SUSY Particles
Leave the detector
- Missing Energy

Missing
Energy

o*
.
.
.
.
*
.

— SM particle deposits energy, but new particle
doesn’t interact with the detector and leaves
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Look at
e .thc

Going from Collisions to
Experimental Results

lots of collisions (call them events) and identify t
lt pass the “New Particle Identification Requireme

he ones
nts”

N

= Luminosity - c - Acceptance

ngnal T T "
| H f H Il th
How many collisions How many proton ™% O ten a proton ow well the
(events) pass all our anti-proton anti-proton collision detectqr does at
requirements  collisions happened Produces a SUSY  detecting SUSY
event events

Number of background events from Standard

Model Sources follows the same procedure
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Analysis Overview

% +Ana priori analysis where we look at all
- events that have two photons

= __\f ~Use CDF detector (EM calorimeter and photon

timing system)
- Require good photon identification

+ Estimate the backgrounds for this sample as a
function of various requirements

+ Optimize with background predictions and
sighal acceptance to get best sensitivity

- Implement photon timing simulation into signal
MC sample

- Use limit calculator based on Bayesian method
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Hardware Tools to Identify
Photons

Eunsin Lee Seminar at UPenn December 17 2009
10



.u <~ “antiproton collisions

 Tevatron Particle Collider at Fermilab:
ijleli der Detector at Fermilab (CDF)

‘ TheTevatron (accelerator) : a huge detector CDF -
.—-to-produce high energy proton-

To study the collisions

Main Injector \
& Recycler e
e EM Calorimeter:
E e 2% Photon timing +
st HH 4-momentum
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Inside the Accelerator

+ Proton-antiproton bunches are counter-rotated in
the Tevatron accelerator and collide every 400 ns
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EM Calorimeter

4+ CDF uses a scintillator based
samplmg calorimeter detector:
measure the energy deposition
“of part1cles

=+ When photon interacts with
‘heavy material in the
calorimeter it creates a
cascade (“shower”) of
electron, positron, and photon
with light emission

+ The light is readout by PMT ~ * Strip/Wire Gas Chamber used

: : : to refine the position of a
with output being proportional ohoton, located where the
to the total energy

. EM shower has its maximum,
+ Energy resolution: using its shower profile

o(E)/E = 13.5%/~E; + Position resolution: 2 mm
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-‘ + Photon SIgnature f Ah
“Compact” EM clus erosmogveerp tE-ame in cg)rlmep ID

+ N@ e{ectnc charge: no track (unlike electron)
+ NO color charge: unlike n°, photon is isolated object

-

— S
=l R

Isolation cone:

R=0.4 rad pre-shower shower maximum profile
=0.4 ra
_______________ Signal:
direct y
EM Cal HAD Cal
Background:
o/mO—yy
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The EMTiming System

VAN F CDF EM Timing Project
+Provides time of s | s cra
—arrival of photons & ouime | me- -

at calorimeter s

+Timing resolution: Ist Floor
s O 5 nS On Detector

+100% efficient for R
photons with T

PhOtO PMT

Electro- Multiplier gage

E > 1 3 V Magnetic Tube It
T e Calorimeter (PMT) i =l
(CEM, PEM) v
|,% -

RANCT DI |

. 3 a— 80
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Photon Timing (EMTiming)
Simulation

¥ EMTiming System is simulated using MC that is run,

- independently, after event generation (PYTHIA) and

detector simulation (GEANT based)

+ Goal is to reproduce the arrival time of single
particles and handle with all MC particle types as in
real data

+ Takes into account physics effects like vertex position
and event time

+ Correct for energy slewing effects as well as channel-
by-channel energy threshold
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MC Generation and Reconstruction

6 steps of the process of turning MC events into TDC
: readout

SSuw 1. Calculate the true arrival time and correct for

the time of flight(TOF) and vertex time

For example, for neutralino decaying into a photon
and a gravitino, t, ., is the time the neutralino
decays
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RS +2 Check to see if it hits an EMTiming-
< 'inst’rumented part of the detector

= + 3. Smear the corrected arrival time for the

intrinsic resolution
+ 4. Check to see if it has energy to create a hit

+ 5. Convert the generated arrival time to a raw
time using the ASD (Amplifier Shaper
Discriminator) slewing curve

+ 6. Truncate the raw time to an integer to
simulate the TDC
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Optimization
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Optimization Strategy

 +Take the diphoton data sample and

- then do an optimization

~_+Consider various requirements, choose
the one that gives the best sensitivity

+Find these optimal requirements by
calculating the 95% C.L. expected
upper cross section limit (Bayesian
method)
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Upper Limits (Bayesian method)

-+ In counting experiment, given the number of
observed event, n,, the probability P for observing
that number depends on the mean number of

~ .~ events expected, p, according to the Poisson
~distribution

+ The sensitivity is estimated in the form of expected
95% C.L. upper cross section limits, cgs(€Xp), using a
Bayesian calculation with a constant cross section
prior

+ The Limit is calculated from the 95% C.L. upper
cross section limits, c¢5(N,,), based on the number
of events N_,. “observed” in a pseudo-experiment,
assuming no signal exists, using background and
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4+ Thé§g5(Nobs) is determined from:

o095 Ngps.cut)
0.95 = / do Poisson(Nype, ftexp(o, cut))  (7.1)

<)

where plep(0,cut) = Nygp(cut) +o0-L-(A-€)(cut)

is the sum of the number of expected background (N,) and expected signal events,

and Poisson(Ngbs,flexp) is the normalized Poisson distribution of Nyps with mean preyp.

+ The uncertainties on the sighal acceptance and
background are treated as nuisance parameters with
Gaussian priors (Bayesian)

+ The expected cross section limit is given by
averaging over Poisson probability

o0
o4’ (cut) = Z 095(Nops, cut) Poisson(Nops, ftexp = Nexp(cut)) — (7.2)
Nops=0
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o _ 95/ C.L. Cross Section Limits
and Plot of H+

yy+§_analysis in GMSB CDF Run Il Preliminary, 2.6 fb' vy +§r analysis in GMSB CDF Run Il Preliminary, 2.6 fb”

[ ] QCDwith fake &
[ ] EWKwithreal B,

sitivity
=

;z‘: mass=140 GeV, lifetime=0 ns

C"):_ d limit and 1o aton > ‘“'_— 4
o - —— expected limit an stat. variation 1 = _ Non-collision E
W Io . | production cross section — Q - : TTTTTTT GMSB signal ]
B 1 e R ]

- | -4 ™ B 71 mass=140 GeV, lifetime=0ns |
o [ J 2 = -
60— — & 1 Trteeasee ]

B _ E n -

40— = I.I:] 107 = =

o : | |1 | 11 1 | I 1 1 | | I 1 1 1 I L1 1 I 1| | : 104 L Ll L ' Ll L | | L L L | Ll Ll | L [ I
100 150 200 250 300 350 400 0 100 200 300 500 600 700
H; cut (GeV) H; (GaV)

+ Optimization Result :  + Hy Plot for background

Minimal at H;=200 GeV distributions along with new
physics signal: Good separation!

Eunsin Lee Seminar at UPenn December 17 2009
23



H; plot along with Data

vy +§r analysis in GMSB CDF Run Il Preliminary, 2.6 fb’
T | T T T T | T T T T T T T T | T T T T | T T T T | T T T T

— o Data

[ 1 QCD with fake E;
EWK with real E,

Non-collision
t--vnnwns GMSB signal
E? mass=140 GeV, lifetime=0 ns

|

I IIIIIII|
o
] IIIIIII|

Events per 20 GeV

-
S
-

10'2 | 1 1 I'I 1 1 1 | 1 | 1 1 1 1 | 1 1 1 1 | 1 I-: |

0 100 200 300 400 500 600 700
H; (GeV)

+ Background estimations are well modeled

+ After the H; > 200 GeV no data event observed
= “No new particle found”
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Conclusions

= We"széarch for new particles using photon final
. states from high-energy proton-antiproton collisions

-~ collected by the CDF detector

+ No such an event found so we set the world’s best
limits on this type of search sensitivity

+ Expertise on photon identification using well
understood detector and optimization techniques
based Bayesian statistics will contribute the PET
imaging project
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Back Up
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Phototubes

EM Calorimeter at CDF
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Slewing Effects
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