

EMTiming Validation

Eunsin Lee and Adam Aurisano for the EMTiming Group
Texas A&M University
Photon Meeting

12/19/07

Outline

- Calibration Strategy
- Validating the Hardware
- Online results using ObjectMon
- Validation of the calibration
- Timing Mean and RMS vs. Store number
- Conclusions

- Produce calibration tables to get rid of the channel-bychannel hardware effects
- 2. Timing information depends on energy (slewing corrections), especially in high energy region:

3. Correct the timing information (for each channel) as a function of energy and put the fit parameters into the Calibration table

The EMTiming system response as a function of the energy deposited in the EM calorimeter

- The efficiency = the ratio of number of events with time recorded in TDC to all events
- Include all tower together
- The distribution is well described by an error/smeared step function

$$Erf(E_{th},\sigma \varepsilon)$$

where E_{th} is the threshold, σ is the transition width at threshold, ε is the plateau efficiency

The threshold and width

CEM : $3.8 \pm 0.3 \text{ GeV}$, $1.4 \pm 0.2 \text{ GeV}$

 $PEM : 1.9 \pm 0.1 \text{ GeV}, 0.6 \pm 0.1 \text{ GeV}$

Measured performance after commissioning

Check Hardware and Calibrations

(Online ObjectMon plots)

Timing After Calibration Online

(ObjectMon plots)

Timing after Calibration (Uniformity)

Offline Checks with W's and Z's

Run Range: 207079 - 210008

All distributions look normal, no gross mis-calibration is detected. There is a shift in the mean of the timing distribution for CEM, but it will be taken out by the Run-by-Run corrections.

 $W \rightarrow ev$: The arrival time of electron

MEAN $\sim 0 \text{ ns}$ RMS $\sim 1.6 \text{ ns}$

 $Z \rightarrow ee$: The arrival time difference of two electrons

 $MEAN \sim 0 \text{ ns}$ $RMS \sim 1 \text{ ns}$

Validation of the Calibration-cont.

bphysr stream for runs 253092-254389. The calibrations cover the same range including all channels.

Conclusions

- Hardware is working well
- Calibrations are working well and uniform throughout the system
- Uniform response as a function of run(store)
- Ready for analysis

12/19/07