Cambridge-Mitchell (TAMU) Collaboration in Cos Texas A&M University, College Station May 14-18, 2007

Particle Physics and Cosmology in the **Co-Annihilation Region** R. Arnowitt, A. Aurisano, B. Dutta, Gurrola, T. Kamon, A. Krislock, N. Kolev*, P. Simeon, <u>D. Toback</u> & P. Wagner Department of Physics, Texas A&M University *Department of Physics, Regina University

Particle Physics and Cosmology in the Co-annihilation Region Dave Topack et. al. Taxas Addi University Energy 73%

Introduction

•What problems are we trying to solve?

- Dark Matter
- Hierarchy problem in the Standard Model
- Other Particle Physics problems...

•Is there a single solution to both of these problems?

- Minimal solution?

PPC 2007Particle Physics and Cosmology in the Co-annihilation Region5/17/2007Dave Toback et. al., Texas A&M University

Particle Physics solution to this problem?

The Players and their Roles

Cosmologists/

Astronomers

PPC 2007 5/17/2007 Particle

Particle

Experimentalists

Theorists

The Players and Their Roles

SSECTOR MANAGEMENT		
	SUPERMAR	VONDER WOMAN
Astronomy and Cosmology tell us about Dark Matter	Perticle Physics Theory Predicts Supersymmetry →Dark Matter Candidate	Experimentalists at FNAL/LHC do direct searches for SUSY particles
Learn more about the universe with two separate measurements of Ωh^2	Convert the masses into SUSY model parameters and Ωh ² Do we live in a world with Universal Couplings?	Discover SUSY and measure the masses of the superparticles
PPC 2007 Particle f 5/17/2007 C	Physics and Cosmology in the Co-annihila Dave Toback et. al., Texas A&M Univers	tion Region 4

Outline of the Talk

- Supersymmetry and the Co-annihilation region
 - The important experimental constraints 🚔
 - A Smoking Gun: Small $\Delta M = M_{stau} M_{LSP}$
- Identifying events at the LHC
 - Discovery and Experimental Observables
- Measurements of
 - Particle masses: ΔM , M_{Gluino} & M_{χ^2}
 - Supersymmetry parameters: M_0 and $M_{1/2}$
 - Cosmological implications: $\Omega_{LSP}h^2$
- Conclusions

Structure of the Analysis

- 1. Use the current constraints/understanding to motivate the co-annihilation region of Supersymmetry in mSUGRA
- 2. Assume this is a correct description of nature and see how well we could measure things at LHC
- 3. Convert these results into useful numbers for both particle physics and cosmology

Hypothetical Timeline

- Pre-2005: Strong constraints on Dark Matter density, the Standard Model and Supersymmetry
- 2005: Phenomenologists use these results to constrain a SUSY model
 → Tell the experimentalists at LHC where to look
- 2008–10: Establish that we live in a Supersymmetric world at the LHC
- 2011: Precision measurements of the particle masses and SUSY parameters → compare Dark Matter relic density predictions to those from WMAP

SUSY, mSUGRA and Cosmology

- Many models of Supersymmetry provide a Cold Dark Matter candidate
- Work in an Minimal Supergravity (mSUGRA) framework
 - Build models from M_{Gut} to Electroweak scale
 - Models consistent with all known experiments
 - Universal Couplings
 - Straight-forward predictions

More on this later

Lighest SUSY Particle 1Lightest Neutralino 1 $\tilde{\chi}_1^0$ 1Cold Dark Matter

PPC 2007 5/17/2007 Particle Physics and Cosmology in the Co-annihilation Region Dave Toback et. al., Texas A&M University 8

mSUGRA in 1 Slide

4 parameters + 1 sign

m _{1/2}	Gaugino mass at <i>M</i> _{GUT}	
<i>m</i> ₀	Scalar soft breaking mass at <i>M</i> _{GUT}	
A ₀	Cubic soft breaking mass at <i>M</i> _{GUT}	
tanβ	$< H_2 > < H_1 >$ at the electroweak scale	
sign(<i>µ</i>)	Sign of Higgs mixing parameter ($W^{(2)} = \mu H_1 H_2$)	

Translation for Experimentalists and Cosmologists: Each combination of these parameters uniquely determines the masses of all the superparticles and the Relic Density ($\Omega_{\gamma^0}h^2$)

Example Translation

Dave Toback et. al., Texas A&M University

5/17/2007

Experimental Constraints

Particle Physicists:

- Non-observation of the Higgs and the Gauginos and their mass limits
- Measurement of branching ratio of the b-quark $\rightarrow s\gamma$

Astronomers and Cosmologists:

WMAP measurement of the Relic Density

$$M_{Higgs} > 114 \ GeV$$

• 2.2x10⁻⁴ < Br (b
$$\rightarrow$$
 s γ) < 4.5x10⁻⁴

•
$$a_{\mu} \times 10^{-10} = 27 \pm 10 (g - 2)$$

• $0.094 < \Omega_{\tilde{\chi}_{1}^{0}}h^{2} < 0.129$ (WMAP)

PPC 2007Particle Physics and Cosmology in the Co-annihilation Region5/17/2007Dave Toback et. al., Texas A&M University

11

Particle Physics Constrained Region

"Vanilla" mSUGRA and Cosmology

Problem

- Most of mSUGRA space predicts too much Dark Matter today
- Need another mechanism to reduce the predicted LSP relic density to be consistent with the amount of Dark Matter observed by WMAP

Co-Annihilation?

- If there is a second SUSY particle with small mass (similar to that of the LSP) it can have a large abundance in the early universe
- The presence of large amounts of this second particle would allow large amounts of the LSP to annihilate away and reduce the relic density observed today
 - Co-annihilation effect (Griest, Seckel:92)
 - Common in many models

The lightest $\tilde{\tau}$ is a good candidate

Small $\tilde{\tau}$ Mass

In mSUGRA models the mass of the lightest $\tilde{\tau}$ can be close to the $\tilde{\chi}_1^0$ mass because of the Renormalization Group Equations (RGEs) for small m_0

For small mass difference we can
get the right relic density
$$\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}$$
$$= 5 \sim 15 \text{ GeV}$$

Add Dark Matter Constraints

Aside on our Assumptions...

The WMAP constraints limits the parameter space to 3 regions that should all be studied:

1. The stau-neutralino co-annihilation region

If $(g-2)_{\mu}$ holds, mostly only this region is left

Concentrate on this region for the rest of this talk...

What if the Co-Annihilation Region is realized in Nature?

- 1. Can such a small mass difference be measured at the LHC?
 - The observation of such a striking small △M would be a smoking gun!
 - → Strong indication that the neutralino is the Dark Matter
- 2. If we can observe such a signal, can we make important measurements?

Outline

- Supersymmetry and the Co-annihilation region
 - The important experimental constraints
 - A Smoking Gun: Small $\Delta M = M_{stau} M_{LSP}$
- Identifying events at the LHC
 - Discovery and Experimental Observables
- Measurements of
 - Particle masses: ΔM , M_{Gluino} & M_{χ^2}
 - Supersymmetry parameters: M_0 and $M_{1/2}$
 - Cosmological implications: $\Omega_{LSP}h^2$
- Conclusions

Structure of the Analysis

- 1. Use the current constraints/understanding to motivate the co-annihilation region of Supersymmetry in mSUGRA
- 2. Assume this is a correct description of nature and see how well we could measure things at LHC
- 3. Convert these results into useful numbers both particle physics and cosmology

A Smoking Gun at the LHC?

High Energy Proton-Proton collisions produce lots of Squarks and Gluinos which eventually decay

Not just any τ will do!

Our τ 's are special!

PPC 2007 5/17/2007

- 1. χ_2 decays produce a pair of opposite sign $\tau 's$
 - Many SM and SUSY backgrounds, jets faking τ's will have equal number like-sign as opposite sign
- 2. Each χ_2 produces one <u>high energy τ </u> and one <u>low energy τ </u>
- 3. The invariant mass of the τ -pair reflects the mass of the SUSY particles and their mass differences

Particle Physics and Cosmology in the Dave Toback et. al., Texas

Create a Sample of $\tilde{\chi}_2^0$ Events

- Require at least two τ' s to get our $\widetilde{\chi}_2^o$
- Large Missing Transverse energy to get the $\widetilde{\chi}_1^o$
- At least one very energetic jet to indicate the

presence of a squark or gluino at the top of the chain

The dominant background is typically ttbar, so we require an extra object and large kinematics to reject it

- 1. Require a third τ from one of the other gauginos (common) \rightarrow 3τ +Jet+Met
- 2. Require a second large jet from the other squark/gluino and large $H_T \rightarrow 2\tau+2Jets+Met$

More details in

5/17/2007

R. Arnowitt et al. Phys.Lett.B639:46,2006 and Phys. Lett.B649:72, 2007 PPC 2007 Particle Physics and Cosmology in the Co-annihilation Region 25

Dave Toback et. al., Texas A&M University

Some Technical Details

Look at the $P_{\rm T}$ distribution of our softest τ

More Observables...

- $\boldsymbol{\cdot}$ Look at the mass of the $\tau^+\tau^-$ in the events
- Can use the same sample to subtract off the non- χ_2 backgrounds \rightarrow Clean peak!

Dave Toback et. al., Texas A&M University

5/17/2007

Discovery Luminosity

Discovery Luminosity

A small ∆M can be detected in first few years of LHC ~100 Events

5/17/2007

Dave Toback et. al., Texas A&M University

Outline

- Supersymmetry and the Co-annihilation region
 - The important experimental constraints
 - A Smoking Gun: Small $\Delta M = M_{stau} M_{LSP}$
- Identifying events at the LHC
 - Discovery and Experimental Observables
- Measurements of
 - Particle masses: ΔM , M_{Gluino} & M_{χ^2}
 - Supersymmetry parameters: M_0 and $M_{1/2}$
 - Cosmological implications: $\Omega_{LSP}h^2$
- Conclusions

Our mSUGRA model (described by m_0 and $m_{1/2}$) can be written, equivalently, by $M_{\tilde{g}}$ and $\Delta M = M_{\tilde{\tau}} - M_{\tilde{\chi}_{1}^{0}}$ Measure these! The Universali ty relations " determine" the other mass values $M_{\tilde{\chi}_{2}^{0}} \sim 0.32 M_{\tilde{g}}$ and $M_{\tilde{\chi}_{2}^{0}} \sim 0.17 M_{\tilde{g}}$ Check these

Measuring the SUSY Masses

- For our sample of events we can make three measurements
- 1. Number of events
- 2. Slope of the \textbf{P}_{T} distribution of the softest τ
- 3. The peak of the $M_{\tau\tau}$ distribution
- Since we are using 3 variables, we can measure three things
- Since A, $\tan\beta$ and $\operatorname{sign}(\mu)$ don't change the phenomenology much (for large $\tan\beta$) we choose to use our three variables to determine ΔM , M_{gluino} and the χ_2 Mass

Model^{*}parameters

PPC 2007Particle Physics and Cosmology in the Co-annihilation Region5/17/2007Dave Toback et. al., Texas A&M University

Universality Test

Measure ΔM and the Gluino Mass

Are we in a Universality World?

Use all 3 observables to make simultaneous measurements

Compare measured $M_{\tilde{\chi}_2^0}$ to $M^{Universality}$ from ΔM , $M_{\tilde{g}}$

What if we Assume the Universality Relations?

Outline

- Supersymmetry and the Co-annihilation region
 - The important experimental constraints
 - A Smoking Gun: Small $\Delta M = M_{stau} M_{LSP}$
- Identifying events at the LHC
 - Discovery and Experimental Observables
- Measurements of
 - Particle masses: ΔM , M_{Gluino} & M_{χ^2}
 - Supersymmetry parameters: M_0 and $M_{1/2}$
 - Cosmological implications: $\Omega_{LSP}h^2$
- Conclusions

Infer m_0 and $m_{1/2}$ Use ΔM and M_{qluino} to measure m_0 and $m_{1/2}$ 358 **Results for** 356 $M_{\tilde{c}} = 830 \ GeV$ $\Delta M = 10.6 \, GeV$ 354 Assume Universality 352 (GeV) **%2~3%** -~10 GeV 350 M1/2 20 348 346 \leftarrow ~5 GeV or σ ~2% \rightarrow 344 342^{LL} 206 207 208 210 211 212 213 209 214 M_0 (GeV) 39 5/17/2007 Dave Toback et. al., Texas A&M University

Cosmology Measurements

Conclusions

- If the co-annihilation region is realized in nature it provides a natural Smoking Gun
- The LHC should be able to uncover the striking small- ΔM signature with ~10 fb⁻¹ of data in multi- τ final states and make high quality measurements with the first few years of running
- The future is bright for Particle Physics and Cosmology as these precision measurements should allow us to measure the ΔM without Universality assumptions and make comparisons to the precision WMAP data with only minor assumptions

Some caveats

Aside...

We note that while the analysis here was done with mSUGRA, a similar analysis is possible for any SUGRA models (most of which possess a co-annihilation region) provided the production of neutralinos is not suppressed