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● The electroweak gauge sector of the standard model  is 
constrained by precisely known parameters

− αEM (MZ) = 1 / 127.918(18)

− GF = 1.16637 (1) x 10-5 GeV-2

− MZ = 91.1876 (21) GeV

− mtop = 172.89 (59) GeV

− MH = 125.25 (17) GeV

● At tree-level, these parameters are related to MW 

− MW
2 = παEM / √2GF sin2ϑW 

● Where ϑW is the Weinberg mixing angle, defined by 

●           cos ϑW = MW/MZ  

Motivation for Precision Measurements
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● Radiative corrections due to heavy quark and Higgs loops and 
(potentially) undiscovered particles

Motivation for Precision Measurements

Motivate the introduction of the ρ parameter:  MW
2 = ρ [MW(tree)]2

with the predictions Δρ = (ρ-1) ~ Mtop
2
  and Δρ ~ ln MH
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● The mass of the W boson is tightly constrained by the symmetries of 
the standard model, in conjunction with Mtop and MHiggs 

− The Higgs boson was the last missing component of the model

− Following the observation of the Higgs boson, a measurement of the W-boson 
mass provides a stringent test of the model

● The W boson mass is presently constrained by SM global fits to a 
relative precision of 0.01%

− provides a strong motivation to test the SM by measuring the mass to the same 
level of precision

− SM expectation MW = 80,357 ± 4inputs ± 4theory MeV
− Inputs include Z- and Higgs boson and top-quark masses, EM coupling and 

muon lifetime measurements 

Motivation for Precision Measurements
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● Hypotheses to provide a deeper explanation of the Higgs field, its 
potential and the Higgs boson, include 

− Supersymmetry
− Compositeness
− New strong interactions
− Extended Higgs sector

● Hypothetical sources of particulate dark matter 

● Extended gauge sector

Beyond-SM Modifications to Expected MW 
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Single Scalar Extension of Higgs Sector

D. López-Val and T. Robens, Phys. Rev. D 90, 114018 (2014)

Inclusion of an additional scalar particle with no SM charges, which mixes 
with the Higgs boson
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Contributions from Supersymmetric Particles

● Radiative correction depends on mass splitting (Δm2) between squarks in 
SU(2) doublet

● SUSY loops can contribute tens of MeV to MW 
− Multi-dimensional parameter space with significant exclusions from LHC 
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W Boson Production at the Tevatron

LeptonW

GluonsQuark

Antiquark

Quark-antiquark annihilation
dominates (80%)

Lepton pT carries most of W mass 
information, can be measured precisely (achieved 0.004%)

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in
calorimeter (calibrated to ~0.2%)
dilutes W mass information, fortunately pT(W) << MW
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 Quadrant of Collider Detector at Fermilab (CDF)

.η = 1
Central electromagnetic calorimeter

Central hadronic calorimeter

Select W and Z bosons with central ( | η | < 1 ) leptons

COT provides
precise lepton 
track momentum
measurement

EM calorimeter 
provides precise
electron energy
measurement

Calorimeters measure 
hadronic recoil particles
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 Collider Detector at Fermilab (CDF)

Central
hadronic
calorimeter

Muon
detector

Central
outer
tracker
(COT)

Central EM
calorimeter
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W & Z Data Samples

● Integrated Luminosity (collected between February 2002 – September 2011):

− Electron and muon channels: L = 8.8 fb-1

− Identical running conditions for both channels, guarantees cross-calibration

● Event selection gives fairly clean samples

− Mis-identification backgrounds ~ 0.5%  

Sample Candidates 
W → electron 1 811 700
Z → electrons 66 180
W → muon 2 424 486
Z → muons 238 534



19

Analysis Strategy
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 Strategy

Maximize the number of internal constraints and cross-checks

Driven by three goals:

1) Robustness: constrain the same parameters in as many different 
ways as possible 

2) Precision: combine independent measurements after showing 
consistency

3) minimize bias: blinded measurements of MZ and MW 
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Drift Chamber (COT) Alignment

COT endplate
geometry
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Internal Alignment of COT
● Use a clean sample of ~480k cosmic rays for cell-by-cell internal 

alignment

● Fit COT hits on both 
sides simultaneously 
to a single helix (AVK, 
H. Gerberich and C. Hays, 
NIMA 506, 110 (2003))

− Time of incidence is a 
floated parameter in 
this 'di-cosmic fit'
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Residuals of COT cells after alignment

Final relative alignment of cells ~1 μm (initial alignment ~50 μm)

(AVK & CH, NIM A 762 (2014)  pp 85-99)

before alignment

after alignment
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Signal Simulation and Template Fitting
● All signals simulated using a Custom Monte Carlo

− Generate finely-spaced templates as a function of the fit variable

− perform binned maximum-likelihood fits to the data

● Custom fast Monte Carlo makes smooth, high statistics templates

− And provides analysis control over key components of the simulation  

● We will extract the W mass from six kinematic distributions: Transverse mass, 
charged lepton pT and missing ET using both electron and muon channels

MW = 80 
GeV

MW = 81 GeV
Monte Carlo template
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W Mass Fits
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Blind Analysis Technique

● All W and Z mass fit results were blinded with a random [-50,50] MeV 
offset hidden in the likelihood fitter

● Blinding offset removed after the analysis was declared frozen

● Technique allows to study all aspects of data while keeping Z boson 
mass and W boson mass result unknown within ±50 MeV
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  W Transverse Mass Fits

electronsmuons Fig. 4

Fig. 36
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  W Charged Lepton pT Fits

electronsmuons Fig. 4

Fig. 37
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  W Neutrino pT Fits

electronsmuons Fig. 4

Fig. 38
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  Summary of W Mass Fits

Consistency between two channels and three kinematic fits

Table 1
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New CDF Result (8.8 fb-1)   
Combined Fit Systematic Uncertainties

Table 2
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W Boson Mass Measurements from Different Experiments

SM expectation: MW = 80,357 ± 4inputs ± 4theory (PDG 2020)
LHCb measurement : MW = 80,354 ± 23stat ± 10exp ± 17theory ± 9PDF  [JHEP 2022, 36 (2022)]  

Fig. 5
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Summary
● The W boson mass is a very interesting parameter to measure 

with increasing precision

● New CDF result is twice as precise as previous 
measurements:

− MW = 80433.5 ± 6.4stat ± 6.9syst MeV                                                                    
     80433.5 ± 9.4 MeV 

● Difference from SM expectation of MW = 80,357 ± 6 MeV

− significance of 7.0σ 
− suggests the possibility of improvements to the SM calculation 

or of extensions to the SM


