Search for Heavy, Long-Lived Neutralinos that Decay to Photons at CDFI/ using Photon Timing (to be submitted to PRD)

Paul Geffert, Max Goncharov, Slava Krutelyov*, Eunsin Lee, Rishi Patel**, David Toback and Peter Wagner***

* Now postdoc at UCSB
** REU student from NYU
*** Now postdoc at Penn

History

- Delayed Photon Analysis published in PRL
- PRL 99, 121801 (2007)
- Goal: Publish more details in a full PRD
- CDF Note 9171
- Godparents: F. Bedeschi, H. Budd and A. Messina
- No New Results

Outline

Since we've done this once already, we were requested to keep it short and sweet

- Short Overview of the Motivation and Theory
- Brief Summary of the Analysis
- Conclusion

Supporting Documentation: CDF Notes 7515, 7918, 7928, 7929, 7960, 8015, 8016

Motivation and Theory

- GMSB models predict heavy neutralinos that decay to photons (see next slide)
- ee $\gamma \gamma+\mathrm{E}_{\mathrm{T}}$ candidate event at CDF in Run I
- First search for heavy, long-lived particles that decay to photons at a hadron collider

GMSB Models

- The lightest neutralino is the NLSP and decays into a gravitino and a photon
- For much of the parameter space the neutralino decay time can be \sim ns
- At the Tevatron neutralinos are pair produced from $\chi_{1}^{ \pm} \chi_{1}^{\top}$ or $\chi_{1}^{ \pm} \chi_{2}^{0}$

Brief Summary of the Analysis

- $\gamma+\mathbb{E}_{\mathrm{T}}+$ jets analysis is sensitive to ns lifetimes while $\gamma \gamma+\mathbb{E}_{\mathrm{T}}$ analysis is sensitive to prompt neutralino decays
Toback and Wagner, PRD 70, 114032 (2004)

Event Schematic and Time Distribution

- Left- Schematics of a long-lived neutralino decay into a gravitino and a photon
- Right- The corrected time distribution for a GMSB example point as well as the non-collision and SM backgrounds

Analysis Optimization

The expected 95\% C.L. cross section limit as a function of the lower value of the timing requirement for a GMSB example point

The Data...
 Timing Distribution

- Left- The timing distribution for the signal and all backgrounds
- Right- A zoomed in view of the signal region, $[2,10]$ ns
- Two events are observed in the signal region, consistent with the background expectation of 1.3 ± 0.7 events

Exclusion Region

- Expected and observed 95\% C.L. exclusion region along with LEP limits
- Highest mass reach is 108 GeV (expected) and 101 GeV (observed) for a lifetime of 5 ns .

Expected Sensitivity for $2 \mathrm{fb}^{-1}$ and $10 \mathrm{fb}^{-1}$

Conclusion

- Both readings of the PRD are complete and the GPS have signed off
- Next generation analyses with more data and new ideas/techniques are in progress

Backup slides

PRD Figure 1- Feynman Diagrams

- Feynman diagrams of the dominant production processes at the Tevatron
- Use SPS 8 GMSB model line (Eur. Phys. J. C 25, 113 (2002)): $\tan (\beta)=15, \operatorname{sgn}(\mu)=1, N_{m}=1$, and $\mathrm{M}_{\mathrm{m}}=2 \Lambda$

Fig. 3- Photon Can Hit the Calorimeter with

a Large Incident Angle

- Left- Definition of α, the projection of the photon incident angle in the (r, z) plane
- Right- Definition of β, the projection of the photon incident angle in the (r, ϕ) plane

Fig. 4- Look at Photon Incident Angles

- Dramined photons have a larger incident angle than promptly produced photons
- Distribution of the total incident angle, ψ, of the photon at the face of the calorimeter

Fig. 5- Compare ID Variables (Long Lifetime vs. 0 Lifetime)

CDFSim ID variable distributions minus their requirement value

Fig. 6- Efficiency vs. Angle, Compare Electrons and Photons from Data and MC

- Left- The efficiencies for e's and γ 's to pass ID requirements vs. incident angle α
- Right- The same but for β
- Efficiency falls in β primarily due to the energy isolation requirement; small effect, well-modeled in MC

4/ 3/ 08 CDF Weekly
Paul Geffert -Texas A\&M University

Fig. 7- New PMT Asymmetry Cut to Kill Spikes

- Compare asymmetry of spikes to real electrons
- Require asymmetry to be less than 0.6

4/ 3/ 08 CDF Weekly
Paul Geffert -Texas A\&M University

Fig. 8- Vertexing

- The collision time and position for the reconstructed highest Σp_{T} vertex in $W \rightarrow$ ev events
- Also show correlation for fun

Fig. 9- Vertexing Performance/ Resolution

The difference in z and t between two arbitrarily selected sets of tracks from the same reconstructed vertex in a $\mathrm{W} \rightarrow \mathrm{e} v$ dataset

Fig. 10- Vertexing Performance continued; Compare Vertex to Electron Track

- The distributions are centered at zero \rightarrow no clustering bias
- The second Gaussian contains events where the electron is from a second vertex in the event

Fig. 11- Vertexing Efficiency

We require a vertex to have at least 4 tracks and $\Sigma p_{\mathrm{T}}>15 \mathrm{GeV} \rightarrow 100 \%$ efficiency

Fig. 12- Check EMTiming Simulation and Show Resolution

Well centered around 0 ns with RMS of 0.64 ns

Fig. 13- Timing Distribution for "Right" and "Wrong" Vertex Selection

- Top Left- Electron track matches vertex ("Right Vertex")
- Top Right- Electron antimatched to vertex ("Wrong Vertex")

4/ 3/ 08 CDF Weekly
Paul Geffert -Texas A\&M University

Fig. 14- Systematic Variation of Timing Mean and RMS

Look at the timing distribution for electrons from subsamples of $W \rightarrow e v+j e t s ~ e v e n t s ~ f o r ~$ different requirements on electron E_{T}, jet E_{T}, and E_{T}

4/ 3/ 08 CDF Weekly

Paul Geffert -Texas A\&M University

Fig. 15- Systematic Variation of Timing - Wrong Vertex

The mean and RMS of the timing for electrons as a function of η, when the wrong vertex is picked

Fig. 16- Beam Halo

- Illultration of a beam helwevent
- Top-The mean corrected time changes as a function of η but is always less than
 zero
- Bottom-The halo interacts with many hadronic calorimeter towers at high η

Fig. 17- Beam Halo vs. Cosmics

The variables used to separate cosmic and beam halo backgrounds to create their timing templates

Fig. 18- Timing for Beam Halo and

Cosmics

The corrected time distributions for beam halo (left) and cosmic ray (right) backgrounds

Fig. 19- More on Beam Halo

- Most beam halo photons arrive at $\phi \approx 0$ - Use this for background normalization

Fig. 22- Kinematic Distributions

- Compare background predictions and data
- No evidence for new physics

Fig. 23- Expected and Observed Limits and Production Cross Sections

- Limits vs. lifetime for $m=100 \mathrm{GeV}$
- Limits vs. mass for a lifetime of 5 ns

Fig. 24- Results...

The contours of constant 95\% C.L. cross section upper limit for the observed number of events

