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Outline

- Supersymmetry
- What is it? Who needs it?
- New particles at the Large Hadron Collider (LHC)?

- Finding particles in colliders like the LHC

- Does the detector record what we are looking for?
- Why record based on momentum imbalance?
- How efficient is the Compact Muon Solenoid (CMS)?
- Are there any complications?



Supersymmetry (SUSY)

- Very compelling in particle physics
- Solves a host of problems with the Standard Model (SM)
Standard particles SUSY particles

Higgs

| Quarks ‘ Leptons . Force particles Squarks \_) Sleptons O SUmSZ ‘;orce
particles

- SUSY particles much heavier than SM counterparts
- LHC has high-energy collisions at 8 TeV, soon to be 13

- LHC should create these particles!
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Searching for New Particles

- Important equation to find new particles

* N s = (Cross section) x (Luminosity) x (Acceptance)
— _/

Y Y
# Events Created % Events Recorded

- Proton bunches collide every ~25 ns (40 MHz)

- Detector can'’t record every event
- Only records ~100 events/second
- How well does it record the events we are interested in?

- What do these events look like at the LHC?



Collisions at the LHC

- What does a collision at the LHC look like with SUSY?
SUSY particles undetected

SM particles detected
- Much more complicated than this in reality...



A more correct picture

- At LHC, don’t just send protons in one at a time.
- They don't all interact in the middle either!

- ~10% protons in each beam crossing!

- Any number of them can collide
- ~20 inelastic (head-on collisions) per crossing

- Around 1000 charged particles are created per collision

- What does this look like?



Lots of Collisions and Particles!

20 reconstructed
Fivertices




e
SUSY and Events

- Good to look at transverse momentum
- SUSY events have large momentum imbalance (MET)
- SM events have low MET
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- If good at finding high MET, good at finding SUSY!
- How efficiently do we record events with high MET?
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MET Efficiency at CMS

- Take events from unrelated trigger

{s=8TeV L=5.750+272fb"
- Then see how well MET trigger does T
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- High efficiency in this region
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Multiple Collisions in Detector

- How do different number of  PFMET150 Efficiency in Plateau Region
collisions affect efficiency? | |

- “fake” MET counted in triggers
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Summary and Next Steps

- High momentum imbalance is signature of SUSY
- High efficiency with high momentum imbalance events
- Efficiency linear in plateau region...Good!
- Dependent on pileup...Bad!

- Higgs recently found at 125 GeV
- Newer SUSY models have another signature besides MET
- Need to analyze those triggers too!

13



BACKUP SLIDES




Monte Carlo Simulations

How well can we model these events?

Looks like the datal Does not look like the data!
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Coannihilation

- Particular model of SUSY that is cosmologically
motivated

- Allows for the lightest neutralino to be Dark Matter

=) Predicts Dark Matter relic density
- Neutralino and stau annihilate in early universe

See R. Arnowitt, et al., Phys. Rev. Lett. 100, 231802 (2008)

- So how do we go about finding new particles?
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Coannihilation at LHC  wissing Energy
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Coannihilation (CA) Region of SUSY

- Part of a minimal supergravity model, mSUGRA

- Mass of lightest neutralino 7 similar to the %

« AM ~ 5 —15 GeV
- All other SUSY particles have much higher masses
- Branching ratio for ¥ - 7 + ¥{ about 100%

- #? and ¥ annihilation predicts dark matter relic density

. Lightest neutralino, #?, is dark matter
- See R. Arnowitt, et al., Phys. Rev. Lett. 100, 231802 (2008)

- How do we find it?
18



N
Trigger

MHT = —ZpT Vpr > 30 GeV
jets
- Offline MHT is the MHT that is recorded after the jets are
reconstructed by a higher level trigger
- More precise than what is measured by the trigger itself



Events
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e
All Data

Fit: [0]*0.5*(Erf((x-[1])*0.5/[2])+1)
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Fits

Flt [O]*O5*(Erf((x_[l])*05/[2])+1) PFMet150 Dependence on Pileup
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N
Efficiency

Using gaussian fit Using linear fit in plateau region
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e
Standard Model

- Explains nearly all of
particle physics

I The Standard Model

Fermions Bosons
o Correctly_ predicted i U T .t, 0
new particles m | .
- Fermions e

- Half-integer spin
- Bosons
- Integer spin
- Not the whole story...

223

Source: AAAS “Yet to be confirmed
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Beyond the Standard Model

- Two big problems for the Standard Model

1. Higgs mass difficult to calculate
- Diverges without fine-tuning
- Likely a Higgs with a finite mass

2. No SM patrticle can explain dark matter
« Strong evidence for dark matter as a particle

- Something new must be out there
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Standard Model (SM) and Supersymmetry (SUSY)

Similar to how there is a symmetry between matter and
anti-matter, there is a symmetry between SM and SUSY.

Standard particles SUSY particles

I Quarks . Leptons . Force particles

Bosons

Fermions 27
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Supersymmetry (SUSY)

- Every particle has a
supersymmetric

“partner” SUSY particles

« Fermions«~Bosons ~ o~ ;

- Removes divergence of
_Ilggs MaSS ‘,.)‘r‘ o~ f’; ‘ ) Higgsino

- No need for fine-tuning

- R-parity conservation
gives dark matter
candidate

- Force particle states mix
to form charginos and
neutralinos

Squarks () Sleptons O SUSY force
particles
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Outline

- What is supersymmetry? Coannihilation? Why do we
need it?

- How do we find it? What do we look for?

- Are the detectors we have good at finding the evidence?
Are we good at simulating the data?

- What are the next steps to finding it, if it's out there?
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