Signals in the Co-annihilation Region of Supersymmetry at the LHC

- Supersymmetry and Dark Matter -

Adam Aurisano

In Collaboration with Richard Arnowitt, Bhaskar Dutta*, Teruki Kamon, David Toback & Peter Wagner

Texas A&M University Regina University*

Texas Section of the APS Adam Aurisano

8 October 2004

Outline

- Supersymmetry (SUSY) and Cosmology
 - Supersymmetric particles
- How to measure a small τ̃ − χ₁⁰ mass difference (ΔM)
- The analysis
- Results
- Conclusions and future plans

Introduction

- Cosmology says: most matter is cold dark matter (CDM)
- CDM is important in the formation of structure in the universe
- SUSY for Grand Unification of forces: Supersymmetric particles
- SUSY provides a valid CDM candidate $\tilde{\chi}_1^0$

Supersymmetric Particles

- Every standard model particle has a corresponding SUSY particle
- Parameters of SUSY tells us the masses and coupling of these particles
- Recent cosmological data point to parameters in the "coannihilation region

Co-annihilation Region

Adam Aurisano

- The $\tilde{\tau}$ and $\tilde{\chi}_{1}^{0}$ are nearly degenerate: $\Delta M < 15 \text{ GeV}$
- Two Feynman diagrams determine the amount of the CDM ($\tilde{\chi}_1^0$) in the universe
- We can measure △M down to ~3 GeV at a future e⁺e⁻ linear collider
- Can we measure ∆M at the LHC?

Analysis (cont.)

- Very little standard model background with 3 τ's
 - Require an extra jet from squarks and large missing E_T from x̃⁰₁ just in case
- Leading jet E_T + missing E_T > 400 GeV

E_T Spectrum of Third τ

Event Rate vs. Mass Difference

∆M Measurement

- Uncertainty calculated based on a linear fit
- No systematic error
- We can measure ∆M at the LHC with this accuracy within a year of running (similar to LC)

8 October 2004

Texas Section of the APS Adam Aurisano

Conclusions and Future Work

- For cosmological reasons, the coannihilation region is an important place to study
- Our new method may help us measure the $\tilde{\tau} \tilde{\chi}_1^0$ mass well
- Analysis of systematic error is underway
- We are investigating ways to do even better