
Structuring the Development
of Software for QPix (Part 2):

Dave Elofson, Mike Kelsey, Dave Toback
Texas A&M University
May 13, 2022

Version control, bureaucracy, releases, packages, etc.

*https://github.com/Q-Pix/docs/wiki 1

https://github.com/Q-Pix/docs/wiki

Outline

● QUICK RECAP: Philosophy of
Software Development Structure

○ Version control & Bureaucracy
○ Releases, packages & tags

● Applying the philosophy to
QPix software development

○ Structure of the QPix project of
GitHub

○ Modifying the repository
■ Issues
■ Forking
■ Editing
■ Pull Requests

○ Cool-off Period: Vetting the
soon-to-be new release

2

Part 1:
Philosophy of Software Development

Structure

Recap

● Package Management and version control are necessary to maintaining order while
modifying Packages

● Bureaucracy is how we make package management possible, and is vital in team
settings

○ Developers modify the code, adding features and fixing bugs
○ Package Managers are responsible for maintaining the integrity of the package while incorporating the

developers new modifications
○ Release Managers are responsible for working with the Package Managers to make sure all

Packages work together in a new Release
● We are trying to enforce a single line of development, which is properly

documented, so new releases replace old, and we don’t go back to patch old
releases.

● For a more detailed presentation, see the talk Structuring the Development of
Software for QPix (Part 1) from 4/29/2022

https://docs.google.com/presentation/d/187GwcPfy1LeTP3y4IfRd4snzXfFT7vbAMYg2NC8LC78/edit?usp=sharing
https://docs.google.com/presentation/d/187GwcPfy1LeTP3y4IfRd4snzXfFT7vbAMYg2NC8LC78/edit?usp=sharing

Part 2:
Putting this into practice with QPix

5

Structure
of Git

We keep all of our
repositories in the Q-Pix
project on github.
https://github.com/Q-Pix

Trying to keep all
documentation for
software in the
docs repository

6

https://github.com/Q-Pix

Structure of a repository
“Branches” will show
you each branch in
repository. Notice
how there is a
master and develop

“Tags” will show you
each tag in repository.
Notice how there is a
record of every
version

7

Modifying the repository (A high level overview)

● Forking the repository
○ All modifications will be done on your personal forked repository and then transferred to the

group repository
○ Once you (properly) fork the repository once, you won’t need to do it again

● Opening an issue
○ Every time you want to modify the repository (either to add a cool feature or to fix a bug) you

need to start by opening an issue explaining what and why
● Modifying the code
● Submitting a pull request

○ This is how you ask to have your modifications from your forked repository incorporated into
the group repository and then into the new version

More detailed explanation of each step coming next…

Forking the repository

● Forking the repository is making a personal copy of the group repository for
your own personal use

● It provides a layer of protection between modifications to the code and the
working versions of the Package

● Anything you do will be isolated to your personal repository
○ In the event of a disaster, the group repository is unharmed and you can revert back to the

working version of the group repository
○ You have the freedom to do what you want without affecting anyone else’s version of the

package
Note: Just because you can do what you want does not mean that you can use this to
produce credible results. In order to produce credible results, you must be using a vetted
version of the group repository

Creating a fork Start creating a fork by clicking
“Fork”

It will automatically name the
fork after the parent repository.
All you need to do is click
“Create fork”

Your new forked repository name will
look like this

Properly setting up your fork

Clone your new fork locally by using

Track the original repository as a remote of the fork

Note: fetching upstream will sync up your fork with the latest on the develop branch of the Q-Pix version of
the repository

Setting up your fork properly ensures that you can stay up-to-date with the QPix repositories, and also
allows you to create pull requests to modify the QPix repositories with the modifications you develop

$ git clone git@github.com:delofson0211/ReleaseBuilder.git # creates local repository

$ git remote add –track develop upstream git@github.com:Q-Pix/ReleaseBuilder.git
$ git fetch upstream

mailto:git@github.com
mailto:git@github.com

Opening
an issue

Whether it’s good or bad,
first open an issue and
explain what is going on

You can see a list of all
open issues here

Each issue is assigned a number.
In this case, this is Issue #7

For your new code, you will want to
open a New Issue by clicking on the
button above 12

Opening
an issue

Give the issue a good
title that is clear,
concise and informative

Save any commentary,
elaboration or
explanation for the
comment

Submit the new issue and go back to the
issues page to see what issue number your
issue was assigned

13

Modifying the code (Making a new branch)

For all new code, it needs to go in a new branch. As mentioned, if it is to fix a
problem, it should be titled as “bugfix/[issue number]” or if it is to add something
new, it should be titled “feature/[issue number]”

This can all be done from the command line

$ git checkout develop # makes “develop” your current branch
$ git pull —all # makes sure you have latest changes
$ git checkout -b <branch> # create new branch with your chosen name
$ git push –set-upstream origin <branch> # links local branch to remote repository

14
Make sure this is all happening in your forked repository!

Modifying the code (Adding your code)

You have now created a branch both locally and remotely that is up to date with the develop
branch, and will contain all of your new code.

Bugfix and feature branches are allowed to not work. They are your code and no one will
complain if there is a problem. Do not merge your code to develop unless it has been tested to
work. If you need others to test your code, they can checkout your branch to test it.

Save fast, save frequently – If multiple people are contributing to the repository (which in our
case, they are) code can change. It is good practice to not have your branch sitting for too long
before checking back in with develop, or merging, otherwise it could get left behind and no longer
be compatible with the development branch. If you have been working on a branch for a while, it
may be a good idea to run git fetch upstream to make sure you are still up to date

15

Modifying the repositories (updating your branch)

As you make changes to your branch, you may want to update the remote version of your branch with your
new modifications. This can be done with the following steps

1. Add - mark the files you want updated in the remote repository
○ Some files may just be modified by running your code and may not have any real significance to

the package. Leave these out. Note: Adding does not actually record any changes
2. Commit

○ Records the changes that you made on your own local branch. This still does not save them.
3. Push

○ This will push the changes to the repository. By pushing to origin, you can update your changes
to the remote repository. If you skip this step, you will not see your changes on github.com, nor
will anyone else be able to see them.

$ git status # shows the status of the branch including which files to be
committed and which to be left out

$ git add <list files to add for commit> # add any files that you purposely changed and need to be
included in the commit

$ git commit # commits the give files
$ git push origin <branch name> # pushes the branch upstream to github 16

Modifying the repositories (Pull Requests)

Once you have tested your code, and it works and you are ready to have it checked and
vetted to be added it to the develop branch of the Package. Remember once it is in develop,
it will be included with the next release, so make sure it works and does not cause problems.

Pull Requests act like a safeguard against corruption in the Package. Basically these serve
as one more step/check before code is merged onto the develop branch and can be included
in the next tagged version.

17

Pull Requests

Once you push your changes to the remote branch, you will
see an option to “Compare & pull request”

Note: If the push didn’t just happen and this option isn’t available, you
can do the same thing by clicking the “Pull requests” tab

Pull Requests

Leave a comment explaining what your
modification is doing. Since it should already
be associated with an open issue, also mention
which issue it is related to.

Branch to
be merged
onto
(should be
Q-Pix
version of
develop)

Branch to be
merged (should
be your forked
version)

Tells you if
your merge is
possible by
checking if
your
bugfix/feature
branch is
compatible
with develop

Pull Requests (More for Package Manager)

Once you create the pull request, it will open a
conversation.

The package manager will check that the merge is
possible with no conflicts, vet the modification, and
then approve if everything looks good.

● It is important to note that anyone can help
with the vetting process and can contribute to
the conversation

● The package manager should not merge the
pull request if people are still having issues
with the feature branch

What next? How to make a new release?

Once your pull request has been merged:

● Close the issue. Even if you are the one who opened it, comment on how you solved the problem
and close.

● At this point, your work is done, and the ball is out of your court

● It is the responsibility of the package manager to make a new Master version of the package, and
alert the Release manager (currently dave.elofson@tamu.edu) that it is ready to be released

○ See next page for more details
● It is the responsibility of the Release manager to decide when to make a new release.
● If the Release Manager finds that all the tagged Master versions of the Packages work together, the

Release manager will make a new release, post it in the documentation and announce it to the
group

○ (Yes it is weird because I’m the manager for all of them at the moment, but that WILL change)

21

mailto:dave.elofson@tamu.edu

Modifying the repository (Merging onto master)

● When it is time for a new release to come out, the Package Manager will
create a pull request to merge develop on to master

● There will be a “cooling-off” period in which the develop branch should be
checked by developers to ensure that it works properly before the merge is
completed. The Package Manager will announce the creation of the pull
request and the cooling off period

○ Developers can add to the conversation about the new version to comment on any bugs that
they find

○ The Package Manager will explicitly state how long the cooling off period will last
● If nothing is found, or everything is fixed by the end of the cooling off period,

the Package Manager will merge the pull request and tag the new version

Another resource

For a very coherent walkthrough, also look at this link

Most of the information in the walkthrough was used in the making of this talk, so if
anything is unclear, it may be better in the original article

https://jarv.is/notes/how-to-pull-request-fork-github/

